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ABSTRACT 10 

Agricultural droughts afflicting the contiguous United States (CONUS) are serious and costly 11 

natural hazards. Widespread damage to a single cash crop may be crippling to rural communities 12 

that produce it. While drought is insidious in nature, drought indices derived from 13 

meteorological data and drought impact reports both provide essential guidance to decision 14 

makers about the location and intensity of developing and ongoing droughts. However, response 15 

to dry meteorological conditions is not consistent from one crop type to the next, making crop-16 

specific drought appraisal difficult using weather data alone. Additionally, drought impact 17 

reports are often subjective, latent, or both. To rectify this, we developed drought indices using 18 

meteorological data, and phenological information for the row crops most commonly grown over 19 

CONUS: corn, soybeans, and winter wheat. These are referred to as crop-specific standardized 20 

precipitation-evapotranspiration indices (CSPEIs). CSPEIs correlate more closely with end-of-21 

season yields than traditional meteorological indicators for the eastern two thirds of CONUS for 22 

corn, and offer an advantage in predicting winter wheat yields for the High Plains. CSPEIs do 23 

not always explain a higher fraction of variance than traditional meteorological indicators. In 24 

such cases, results provide insight on which meteorological indicators to use to most effectively 25 

supplement impacts information. 26 

SIGNIFICANCE STATEMENT 27 

This manuscript is expected to advance the science of drought monitoring and appraisal over 28 

CONUS. Using gridded weather data and a novel framework for assessing meteorological 29 

conditions over major US row crops, we gain an improved understanding of the conditions 30 

leading to most severe agricultural drought impacts. 31 
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1. Introduction  32 

Drought is a costly natural hazard with far-reaching societal impacts. Recent major 33 

droughts, such as the 2011 Southern Plains Drought, 2012 Central Plains Drought, California 34 

Megadrought, and 2017 Northern Plains Drought, have all resulted in multi-billion dollar 35 

economic losses (Smith 2020). Drought poses risk to water supply (e.g. Wilhite et al., Udall and 36 

Overpeck 2017, 2005 Sousa et al. 2018), and food security (e.g. Al-Kaisi et al. 2013, Lesk et al. 37 

2016). Droughts can cause mental health complications, or exacerbate existing ones (Vins et al. 38 

2015). Historic droughts have resulted in mass migrations (e.g. Benson et al. 2006), and even 39 

provoked, or escalated human conflict (e.g. Selby et al. 2017). Droughts are expected to develop 40 

more rapidly, and become more intense as the climate continues to warm (Pendergrass et al. 41 

2020, Trenberth et al. 2014). All these factors illustrate the need for timely and accurate drought 42 

warning and detection capabilities. 43 

Improving overall drought monitoring is onerous because there is no universally accepted 44 

definition of drought (Belal 2012). Put simply, drought is “insufficient water to meet needs” 45 

(Redmond 2002). Drought is a unique hazard. While most weather-driven disasters are measured 46 

primarily using weather data (e.g. Groisman et al. 2004, Emanuel 2005, Perkins and Alexander 47 

2013), drought severity is determined using impact data as guidance. To this point, the Glossary 48 

of the American Meteorological Society states “drought is a relative term, therefore any 49 

discussion in terms of precipitation must refer to the particular precipitation-related activity that 50 

is under discussion.” Otherwise stated by Dr. Kelly Redmond, “Drought is a many-headed 51 

creature, and its full description requires an equally diverse menagerie of indices and indicators” 52 

(Redmond 2002). Definitions of drought vary based on both timescale and sector. For instance, a 53 

flash drought is one of rapid onset, defined by speed of degradation of soil and vegetation 54 
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conditions (Otkin et al. 2018).  Conversely, longer sustained droughts may both develop more 55 

slowly, but lead to serious, and long-lasting hydrological imbalances (e.g. Dust Bowl Drought; 56 

Schubert et al. 2004, California Megadrought; Kwon and Lall 2016,). A set of meteorological 57 

conditions will produce impacts of varying severity across different drought-affected sectors 58 

(e.g. agricultural, hydrological, ecological, recreational) (Redmond 2002).  59 

Our focus in this study is on agricultural drought. We implement a novel approach to 60 

appraising droughts over common US row crops by computing crop-specific standardized 61 

precipitation-evaporation indices (CSPEIs) over the entire contiguous US (CONUS) from 1980-62 

present. These indices are designed with operational usage during the growing season in mind. 63 

One well-known source for drought information is the National Drought Mitigation 64 

Center (NDMC). The NDMC, along with several partnering federal offices around the country, 65 

has produced a single, nationwide map of drought conditions every week since 2000 (Lawrimore 66 

et al. 2002). The US Drought Monitor map is not explicitly an agricultural drought product, but 67 

is tied to billions of dollars of agricultural federal disaster relief funding (Rippey 2019). 68 

Improvement of the product is called for explicitly in the current United States Farm Bill (USDA 69 

2018). 70 

Given the nature of agricultural drought, collecting accurate drought impact data is key to 71 

successful appraisal of severity. Concerted efforts to monitor drought impacts do exist nationally. 72 

One such effort is the National Drought Mitigation Center’s Drought Impact Reporter, a tool that 73 

aggregates drought impact information from the media and the public (Smith et al. 2014). The 74 

US Drought Monitor’s weekly update process allows for communication with experts across the 75 

country. These experts range from State Climate Offices to National Weather Service Employees 76 

to Regional Climate Centers and other state and Federal entities. Each week experts share 77 
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impacts being experienced on local, state, and regional scales with the Drought Monitor. Another 78 

technique used to gather impacts data is to crowd source them via community scientists. The 79 

Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) gathers such reports 80 

from volunteer rainfall reporters (Lackstrom et al. 2017, Reges et al. 2016). Despite the human 81 

communication infrastructure associated with tracking agricultural drought, and drought impacts, 82 

there is a need for quantitative, objective metrics designed to accurately depict conditions.  83 

A plethora of indicators and indices have been developed to measure agricultural 84 

drought. These indicators span diverse methodology and data source material. The first effort, 85 

which is still used today, was the Palmer Drought Severity Index (PDSI) developed in 1965 86 

(Palmer 1965). This drought indicator initially used weather station temperature and precipitation 87 

data to estimate available soil moisture (Alley et al. 1984). It has been adapted in numerous ways 88 

including but not limited to the following: making the index multi-scalar (Liu et al. 2017), 89 

adapting the PDSI to different types of drought (Alley 1985), re-standardizing the index, and 90 

creating gridded adaptations of the product (Abatzoglou et al. 2020).  91 

Mulitscalar drought indices that allow for computation of surface water balance fluxes 92 

are useful in the agricultural sector. These indicators are adaptable to the timescales on which 93 

agricultural conditions evolve, which are seasonally, spatially, and operationally variable. 94 

Examples of such products include the Standardized Precipitation Index (SPI) (McKee et al. 95 

1993), Evaporative Demand Drought Index (EDDI) (Hobbins et al. 2016), and Standardized 96 

Precipitation-Evapotranspiration Index (SPEI) (Beguería et al. 2014). The SPI addresses 97 

precipitation (P) only, EDDI addresses reference evapotranspiration (ETr) only, and the SPEI 98 

addresses both precipitation and potential evapotranspiration (PET). 99 
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A considerable amount of effort has been put into developing soil moisture indicators to 100 

address agricultural drought. This includes leveraging agricultural weather station data (e.g. Scott 101 

and Ochsner 2013), national observation networks (Schaefer et al. 2007), remote sensing 102 

products (Entekhabi et al. 2010), and modeling products (Xia et al. 2014). Efforts to track soil 103 

moisture for drought monitoring purposes are explicitly addressed in South Dakota Senator John 104 

Thune’s amendment to the United States Farm Bill (USDA 2018). An ongoing effort to establish 105 

a National Coordinated Soil Moisture Monitoring Network that compiles soil moisture drought 106 

indicators is also underway (Quiring et al. 2015, Clayton et al. 2019).  107 

A variety of satellite-based agricultural drought indicators have been created: The 108 

Vegetation Drought Response Index (VegDRI) measures anomalies in the ratio of reflected and 109 

absorbed near-infrared sunlight (Brown et al. 2013). When near-infrared radiation is absorbed at 110 

lower than normal rates, it is indicative of less photosynthetic activity, which indicates drought 111 

stress. Others use satellite data to derive actual evapotranspiration (AET) (Otkin et al. 2013, 112 

Rangwala et al. 2019), and compute anomalies of either AET (Rangwala 2019), or the ratio 113 

AET/PET (Otkin et al. 2013). Many of these have been developed recently, following the central 114 

plains drought of 2012, a multi-billion-dollar disaster with major agricultural impacts (Rippey 115 

2015, Smith 2020). 116 

All of these indices come with known strengths and weaknesses, and the most 117 

appropriate indicators for usage vary based on application (Svoboda and Fuchs 2016). What 118 

existing, popularized, CONUS-wide, agricultural drought indicators do not provide is 119 

information designed to track drought severity over a specific cash crop. Such information is 120 

vital as a single cash crop may be the driving force behind a local, or regional economy, and 121 

control the narrative of a given drought.  122 
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Despite the myriad of indicators available, drought is still largely defined by its impacts. 123 

For much of the CONUS, notably the central, intercontinental portions of CONUS, community-124 

level drought impacts will be determined by the impact to cash crops. Efforts to quantify impacts 125 

to cash crops do exist, but data are not available for weeks, or sometimes months, after damages 126 

are realized (NASS 2020). Qualitative assessments, such as those available through the Drought 127 

Impact Reporter, and CoCoRaHS Condition Monitoring, sometimes provide valuable crop-128 

specific drought impact information. However, there are disadvantages to relying upon 129 

qualitative information alone. Even if one assumes these reports are gathered by trained, 130 

unbiased observers, they are impossible to standardize. What looks like “moderate drought” to 131 

one observer may appear “severe” to another. We recommend supplementing impact reports 132 

with a drought indicator with the following features: 133 

i. Data-driven, subject to as little bias as possible 134 

ii. Accurately characterizes the crop being modeled 135 

iii. Strongly related to current and or future agricultural impacts 136 

iv. Computed using real-time data with weekly, or finer, temporal resolution 137 

v. Covers the United States with high spatial resolution 138 

In this study, we created such indicators for corn, soybeans, and winter wheat. These 139 

indicators rank water balance for each crop in each year from planting date to harvest similarly to 140 

the Standardized Precipitation-Evapotranspiration Index (SPEI) (Beguería et al. 2014). The key 141 

difference is evapotranspiration is computed based on crop type. In so doing, the following 142 

questions are answered: 1. Do CSPEIs correlate more closely with the yields of the crops they 143 

model than traditional meteorological drought indicators? 2. At what point in the growing season 144 
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does a statistically significant relationship materialize, and does it hold through the remainder of 145 

the growing season?  146 

Efforts to derive crop-specific drought indices have been conducted before on regional 147 

scales, and have shown promise. For instance, crop-specific SPEIs were computed for several 148 

field crops on the Texas high plains, and correlated more closely with end-of-season yields than 149 

traditional drought indicators (Moorhead et al. 2013). A corn-specific index has been used with 150 

success to predict yields in eastern Nebraska (Meyer et al. 1993 parts I and II). The effort 151 

demonstrated here, however, is unprecedented in spatial and temporal scale, and intended for 152 

operational drought monitoring usage. 153 

2. Methods 154 

Crop-specific standardized precipitation-evapotranspiration indices (CSPEIs) are 155 

computed for corn, soybeans, and winter wheat for every day of the growing season for every 156 

year from 1980-2019. We then investigate the relationship between these indices and yields at 157 

county scale. We investigate at what level CSPEIs are indicative of optimal yields, and the 158 

correlation between CSPEI and yields for drier than normal growing season (CSPEI < 0). The 159 

same correlation analysis procedure is followed with a suite of traditional drought indicators: SPI 160 

(McKee et al. 1993), EDDI (Hobbins et al. 2016), and SPEI (Beguería et al. 2014) on a 161 

bimonthly basis at timescales of one, three, six, nine, and twelve months. In total, this is 360 162 

unique drought indicators. Special attention is paid to the comparison between end of model-163 

parametrized growing season (MPGS) CSPEs, and SPIs, EDDIs, and SPEIs (traditional 164 

indicators) of a 6-month aggregation period, as this is most similar to growing season length. If 165 

full growing season CSPEIs correlate more closely to yields than most, or all, traditional 166 
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indicators, they may improve agricultural drought monitoring. Furthermore, the sooner in the 167 

growing season these correlations become robust, the more potential early warning of 168 

agricultural drought impacts. 169 

The methodology prescribed herein is flexible, and may be appropriate for many crops. 170 

The crops chosen for evaluation were corn, soybeans, and winter wheat. These crops were 171 

chosen due to their production scale over CONUS. Corn, soybeans, and wheat are the three most 172 

planted crops by area in the US with 89.7, 76.5, and 31.2 million acres planted respectively in 173 

2019 (NASS 2020). 174 

a) Data: Temperature, precipitation, and potential evapotranspiration data used in this study 175 

were obtained from North American Land Data Assimilation Systems (NLDAS) Forcing A (Rui 176 

and Mocko 2020). This dataset assimilates observations from surface weather stations, satellites, 177 

radiosondes, dropsondes, and aircraft to reconstruct weather conditions across North America on 178 

a 12-km grid. Precipitation data are gauge data interpolated using climatology from the 179 

Parameterized Regression on Independent Slopes Model (PRISM) (Daly et al. 2008, Rui and 180 

Mocko 2020). NLDAS-2 potential evapotranspiration data are computed using the modified 181 

Penman scheme (Mahrt and Ek 1984). Modified Penman PET uses temperature, windspeed, 182 

humidity, and solar radiation data to estimate PET, it is not estimated from temperature alone. 183 

NLDAS data are available back to 1979. Growing seasons 1980-2019 were evaluated here. 1979 184 

was not included because computation of long-term drought indices during growing season 1979 185 

would necessitate availability of 1978 data. NLDAS data were chosen for this study because of 186 

the dataset’s length of record, continuity, and use in similar previous studies (e.g. Hobbins et al. 187 

2016). Other datasets could have been used to complete this work. For example, GridMET 188 

assimilates NLDAS-2 data, and produces a 4-km CONUS product with daily precipitation and 189 
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PET outputs (Abatzoglou 2011). Since CSPEIs are currently produced at county-scale, the finer 190 

resolution was not necessary here. 191 

b) Water Balance Computation: Meteorological conditions are monitored using NLDAS for 192 

corn, soybeans, and winter wheat throughout the model-parameterized growing season (MPGS). 193 

CSPEIs are computed for each day from planting to harvest. The MPGS is determined using a 194 

combination of agricultural data and meteorological data. MPGSs do not start until at least 50% 195 

of the crop has been planted according to National Agriculture Survey Statistics (NASS 2020). 196 

These statistics do vary by year. If fields are too wet for planting (e.g. spring 2019), this will be 197 

reflected in NASS data. Since winter wheat is planted in the fall, the season starts at greenup 198 

date, which is also approximated with NASS data. For corn and soy, the MPGS may be delayed 199 

if freezing temperatures occur after the initial planting date. In such cases, the crop is “replanted” 200 

after the spring’s final freeze.  201 

The MPGS lasts until the crop planted reaches the number of growing degree days 202 

needed for harvest. Growing degree day (GDD) requirements for each crop are listed in Table 1 203 

(Allen et al. 1998). The formulae for computing growing degrees are given in equations 1-3 204 

(NDSU 2020). In equations 1-3, Tmax, Tmin, and Tmean, are the daily high, low, and mean 205 

temperature respectively. 206 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝐹𝑜𝑟 𝑇𝑚𝑒𝑎𝑛(𝑥) < 10: 𝐺𝐷𝐷𝑥 =  𝐺𝐷𝐷𝑥−1 207 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝐹𝑜𝑟 𝑇𝑚𝑒𝑎𝑛(𝑥) > 10, 𝑇max(𝑥) < 30: 𝐺𝐷𝐷𝑥 =  𝐺𝐷𝐷𝑥−1 +
𝑇max(𝑥) + 𝑇min(𝑥)

2
− 10 208 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3: 𝐹𝑜𝑟 𝑇𝑚𝑒𝑎𝑛(𝑥) > 10, 𝑇max(𝑥) >  30: 𝐺𝐷𝐷𝑥 =  𝐺𝐷𝐷𝑥−1 +
30 + 𝑇min(𝑥)

2
− 10 209 

 210 

Traditionally SPEIs are computed by standardizing precipitation accumulation minus 211 

potential evapotranspiration accumulation as in equation 4. Balance = aggregated water balance, 212 
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P = precipitation accumulation, and PET = potential evapotranspiration accumulation from days 213 

1:n.  214 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4: 𝐹𝑜𝑟 𝑥 = 1: 𝑛: 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑥 = 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑥−1 +  𝑃𝑥 − 𝑃𝐸𝑇𝑥 215 

 216 

In this study, a crop-specific water balance is determined using equation 5. P is 217 

accumulated precipitation, and ETr is the reference ET for the crop. ETr is computed based on 218 

crop coefficient (Kc) using equation 6. 219 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5: 𝐹𝑜𝑟 𝑥 = 1: 𝑛: 𝐶𝑆𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑥 =  𝐶𝑆𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑥−1 + 𝑃(𝑥) − 𝐸𝑇𝑟(𝑥) 220 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6: 𝐸𝑇𝑟𝑥 =  𝑃𝐸𝑇𝑥 ∗ 𝐾𝑐𝑥 221 

Crop coefficients (Kc) for corn, soybeans, and winter wheat are provided in Table 2. Kc 222 

Initial, Kc Mid, and Kc End indicate crop coefficient at the start, mid-state, and end of the 223 

growing cycle. Derivations for crop coefficients provided are available in Jensen and Allen 2016. 224 

Crop coefficients are interpolated between beginning, middle, and end season stages as the 225 

season progresses based on GDD. The crop coefficient interpolation scheme selected comes 226 

from the Agrimet Weather Station Network (USBR 2020). No irrigation parameterization is used 227 

in this water balance computation. This is worth noting particularly for crops in western United 228 

States where irrigation is common practice. 229 

To best make sense of the data, an analysis is presented detailing the climatology of crop-230 

specific water balance (P – ETr) over 1980-2019 MPGSs. We computed the mean and standard 231 

deviation of P – ETr for each county with sufficient data. For a county to be included in this 232 

analysis, there must be at least 20 years from 1980-2019 where A: yield data are available, and 233 

B: enough growing degree days accumulated between the last and first freeze for a successful 234 

harvest to be parameterized. 235 
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c) Standardization: Next, a CSPEI is computed for each day of the MPGS for each crop every 236 

year from 1980-2019 using the Beguería et al. 2014 procedure, which fits data to a log-logistic 237 

distribution, which is then adjusted using L-moments. A standardization process is necessary for 238 

maximum utility as a drought indicator since the US Drought Monitor is designed using a 239 

percentile ranking classification system (Lawrimore et al. 2002).  240 

SPI, EDDI, and SPEI all use different standardization processes. SPI and SPEI values are 241 

derived by fitting existing data to a curve. These curves follow gamma distributions in the case 242 

of the SPI and log-logistical distributions in the case of the SPEI. In both cases, the values used 243 

are those indicating how many standard deviations above or below the mean a given 244 

accumulation value would be if the cumulative density function fit to the dataset were normally 245 

distributed. Curve fitting is not used to derive EDDI values. EDDI values are standard deviation 246 

estimates based on weighted percentile values. 247 

d) Comparison to Yields: Corn, soybean, and winter wheat SPEIs were correlated to respective 248 

county-level crop yield data from USDA (NASS 2020). We assessed the effectiveness of 249 

CSPEIs, and traditional indicators, in two ways: 1. What is the correlation between CSPEI and 250 

yields? 2. How widespread are statistically significant results within each NOAA NCEI Climate 251 

Region (NCEI 2020) (Fig. 1)? 252 

Yields of corn, soybeans, and winter wheat have all experienced increases between 1980 253 

and 2019 due primarily to advances in crop genetics (Smith and Kurtz 2015). Yields were 254 

detrended using either a first or second order polynomial fit. The polynomial used for each 255 

county-crop combination was the one explaining the greatest amount of variance in yields. From 256 

here on out, all usage of the word “yields” refers to the detrended dataset. 257 
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There are a number of reasons why yields may decline, including flooding. But for the 258 

purposes of this study, CSPEI is only being evaluated as a drought indicator. Therefore, 259 

correlations between indices and yields were only computed for MPGSs where the drought index 260 

used was < 0. The strength of the relationship between CSPEIs and the yields of the crops they 261 

represent is compared to several of the previously discussed drought indicators, namely SPI, 262 

EDDI, and SPEI. These three indicators were chosen because they are ostensibly simpler forms 263 

of the CSPEI. Output from these indicators makes for a fair, direct comparison to CSPEI. The 264 

indicators were calculated using the same set of reanalysis data used to compute CSPEI. SPI, 265 

EDDI, and SPEI were computed using procedures outlined in McKee et al. 1993, Hobbins et al. 266 

2016, and Beguería et al. 2014 respectively. SPI, EDDI, and SPEI are multiscalar, so several 267 

timescales were used (one, three, six, nine, and twelve month). Similar to CSPEI, correlations 268 

between SPI, EDDI, and SPEI were only evaluated for years where the index was < 0. The years 269 

selected for correlation analysis were determined individually for each indicator, timescale, and 270 

accumulation period. For example, if August 1st 3-month SPI > 0 and August 1st 1-month SPI < 0 271 

for a given year (e.g. 1995), 1995 indicator and yield data would be used in 1-month SPI 272 

correlation analysis, but not in 3-month analysis. Significance of correlation between drought 273 

indicator and yields was assessed using the t-test in equation 7, where t is the t-statistic, r is the 274 

correlation, df is the degrees of freedom (n-2) when analyzing a linear correlation, and n is the 275 

number of years for which the tested drought indicator < 0. The t-statistic is compared to a 276 

critical value (CV), for α = 0.05.  277 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7: 𝑡 =  
𝑟 ∗ √𝑑𝑓

√1 − 𝑟2
 278 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0270.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 10/22/21 03:28 PM UTC



14 
 

 Additional analysis was conducted for counties in which 1. CSPEIs were significantly 279 

correlated with yields at 95% confidence and 2. CSPEIs were more closely correlated with yields 280 

than seasonal SPI, or 6-month SPIs ending between August 15th and September 30th for corn and 281 

soybeans, and between June 1st and July 15th for winter wheat. In these situations, climate and 282 

yield patterns in the years responsible for the largest differences between SPI and CSPEI were 283 

investigated. 284 

3. Results:  285 

a) CSPEI Climatology: MPGS water balance (P – ETr) increases across CONUS from west-to-286 

east for all row crops tested (Fig. 2a-c). Average water balances over western CONUS were 287 

almost exclusively negative, in some cases by over 750 mm/year, such as in the San Joaquin 288 

Valley, California (Fig. 2a,c).   289 

MPGS water balance is negative more often for corn than soybeans or winter wheat. 290 

Corn produces more ETr than soybeans or winter wheat due to its longer growing season, and 291 

high mid-to-late season ETr. Reference ET rates are higher for soybeans than winter wheat 292 

(Table 2). Water balance was not computed for soybeans west of 102 W, since there are so few 293 

planted west of the 102 W meridian. Winter wheat seasonal water balances had the lowest 294 

absolute values (Fig. 2f.) due to its relatively short season from greenup to harvest. Still, for 295 

winter wheat, ETr outpaces P in most years in the High Plains and the West. 296 

The standard deviation in MPGS water balance averaged across all counties for corn, 297 

soybeans, and winter wheat were 156, 123, and 102 mm respectively. Variance in seasonal water 298 

balance was highest over the central plains (Fig. 2d-f), a region known for high seasonal weather 299 

variability in both temperature and precipitation. Water balances may vary by over 250 mm from 300 
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one year to the next. For example, western Missouri water balance in an average MPGS is near 301 

zero for corn. In 2012 this balance was between -600 mm and -900 mm, values akin to average 302 

conditions in central Arizona. Water balance in wet years, such as 1993 or 2015, was as high as 303 

+200 mm. 304 

b) CSPEI vs Yields: Yields are typically higher for corn, soybeans, and winter wheat when 305 

CSPEI is near zero than when CSPEI is much less than zero. Applying a 2nd order polynomial 306 

fit to all CSPEI and yield data for each region reveals that yields often decline similarly in both 307 

anomalously wet and anomalously dry conditions (Fig. 3). Water balance on the wet side of 308 

normal is most often preferred to dry. For corn and soybeans, optimal CSPEI values were 309 

between +0.5 and +1.5 for the Midwest, Northeast, South, and High Plains. For winter wheat, 310 

drier than normal conditions were shown to optimize yields in more climate regions. The highest 311 

yields occur when -1.5 < CSPEI < 0 for the Midwest, Northeast, and Southern Climate Regions. 312 

Extreme conditions, |CSPEI| > 2, were more harmful to yields when wet than dry in these 313 

regions (Fig. 3). CSPEI > 0 conditions were still favored to maximize yields in the Southeast, 314 

High Plains, and Western Climate Regions. 315 

There is substantial scatter between CSPEI and yields. Figure 4 shows all the CSPEI-316 

yield combinations for corn from 1980-2019. While the worst yields often occur during the driest 317 

of years, no CSPEI value should be considered a guarantee of above normal yields. This result is 318 

somewhat expected as agricultural damage is not a drought-only phenomenon. There are a 319 

number of weather-related events that can cause billion dollar agricultural disasters, to say 320 

nothing of unrelated threats (e.g. parasites). Such events include severe hail or windstorms, 321 

floods, and killing freezes (e.g. Smith et al. 2020). 322 
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Correlations were calculated between CSPEIs and end-of-season yields at a county level 323 

for all row crop-county combinations providing NASS yield data (Fig. 5). Since the goal is to 324 

test the impact of drought on yields, and not flooding or pluvial conditions, correlation was only 325 

computed for years in which MPGS CSPEI < 0. The correlation is statistically significant at 95% 326 

confidence for 42%, 31%, and 14% of eligible counties for corn, soybeans, and winter wheat 327 

respectively. Statistical significance indicates correlations of 0.33 or greater, though the exact 328 

threshold changes as a function of number of years CSPEI < 0, and number of years with 329 

available crop yield data. 330 

Correlations between CSPEI and yield were significant for corn over states where corn 331 

production is the highest, such as Iowa and Illinois (NASS 2020). Scattered statistically 332 

significant correlations are found though the South and Southeast Climate Regions. Correlation 333 

between CSPEI and yields was significant across much of the Midwest for Soybeans as well. 334 

Winter wheat yield was strongly related to water balance through much of the high plains 335 

including western Kansas, eastern Colorado, western South Dakota, and Montana. While only 336 

14% of counties had a significant relationship, it was significant through the portion of CONUS 337 

with the highest winter wheat production, or the “wheat belt.”  338 

Very few counties exhibited a significantly negative correlation between CSPEI and 339 

yields. Such counties can be found in California and scattered through the Midwest and South. In 340 

the case of California, winter wheat is mostly irrigated, and irrigation is not considered in CSPEI 341 

computation. Fig. 3 shows that average yields decline from CSPEI = -1 to CSPEI = 0 for both 342 

the Midwest and Southern Climate Regions, so it is not surprising that some counties have a 343 

significantly negative correlation between CSPEI and yields for years with CSPEI < 0.  344 
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Correlation between CSPEI and yields increases for the first two thirds of the growing 345 

season, and then becomes steady (Fig. 6). In the Midwest, the correlation between CSPEI and 346 

yield actually peaks in mid-July, and then decreases. This suggests a below normal water balance 347 

is less consequential to yields in the final third of the growing season for the Midwest.  348 

 The worst yield years often occur when CSPEI values are low (Fig. 7). Over 80% of yield 349 

values below the 5th percentile occur in years in which CSPEI < 0. This is true regardless of 350 

region. In the Midwest, 60% of < 5th percentile corn yields occurred when CSPEI < -1. The 351 

drought of 2012 has a large impact on this result. Results are similar for soybeans, with over 352 

75% of yield years < 5th percentile occurring with CSPEI < 0. Results for winter wheat were 353 

different, with the worst yield years actually occurring when CSPEI > 0. For the Northeast, 65% 354 

of < 5th percentile yield years occurred when CSPEI > 1. This may be because the Northeast 355 

Climate Region is an energy-limited region. Moisture is more abundant than warmth and 356 

sunshine, so wetter than normal years hurt winter wheat production more than help. 357 

c) CSPEI vs Traditional Indicators: CSPEIs correlate more closely with crop yields in drier than 358 

normal years than most indicators in most regions. Figures 8-10 show correlation between 359 

CSPEI and yields for years in which CSPEI < 0, and correlation between traditional drought 360 

indicators and yields at various timescales and seasons for years in which index < 0. These 361 

figures provide strong evidence that growing season weather conditions, particularly 362 

precipitation, are important for estimating row crop yields. CSPEIs are more closely correlated 363 

with yields than nearly all traditional indicators tested for the Midwest, Northeast, Southeast, 364 

South, and High Plains for corn and soybeans. When compared with 360 traditional indicators, 365 

CSPEI was one of the top three highest correlated indices for a number of crop-region 366 

combinations. Examples include corn in the Midwest, soybeans in the Northeast, corn and winter 367 
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wheat in the Southeast, and corn in the South. However, at least one traditional indicator was 368 

more strongly correlated to yields for all crop-region combinations.  369 

The traditional drought indicators most strongly correlated to yields were SPIs or SPEIs 370 

with short aggregation periods in the middle of the growing season. The drought indices most 371 

closely correlated with yields for corn and soybeans were SPI or SPEI of 1-3 months in length 372 

ending between July and October. Water balance over the full growing season is therefore less 373 

indicative of yields than water balance over the mid-growing season. Crop type impacted which 374 

drought indicator was best, likely due to differences in crop seasonal cycle. Winter wheat 375 

greenup occurs earlier than corn or soybean planting season. Soybeans are typically planted after 376 

corn. Correlation between drought indicators and yields peaked earliest for winter wheat and 377 

latest for soybeans.  378 

CSPEIs compared most closely to 6-month duration drought indicators. This is the 379 

aggregation period on average most similar to CSPEI (Fig. 11). CSPEIs were more closely 380 

correlated with yields in dry years than any 6-month indicator for corn in the Midwest, 381 

Southeast, South, and High Plains, and for soybeans in the Northeast, and for winter wheat in the 382 

High Plains. In these cases, the closest traditional indicators to equal correlation strength were 383 

SPI or SPEI ending in September or October. CSPEIs did not explain more variance in yields 384 

than 6-month SPIs or SPEIs for soybeans in the Midwest, Southeast, or South. This may be due 385 

to the long planting season for soybeans in southern regions. One could argue that two CSPEIs 386 

are necessary for soybeans in the South and Southeast Climate Regions, as planting date is 387 

bimodal (NASS 2020). Soybean planting peaks in April/May, and again in July/August.  388 
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Nationwide, CSPEIs performed more poorly for winter wheat than corn or soybeans. This 389 

is evident comparing CSPEIs to other drought indicators (Figs. 8-11). For example, 6-month 390 

SPEIs during the warm season are significantly more correlated to winter wheat yields in dry 391 

years than CSPEIs in the Midwest (Fig. 11). 6-month EDDIs are significantly more correlated to 392 

winter wheat yields than CSPEIs in the Northeast. CSPEIs are poorly correlated to winter wheat 393 

yields in general throughout the Western Climate Region. 394 

d) Notable CSPEI Successes: There are areas over CONUS for which CSPEI was significantly 395 

correlated with yields, and more closely correlated with yields than growing season SPI for corn, 396 

soybeans, and winter wheat. Fig. 12 shows the counties in which CSPEI is both significantly 397 

correlated to yields, and more closely correlated than the highest correlated 6-month SPI ending 398 

between August 15th and September 30th for corn and soybeans, and between June 1st and July 399 

15th for winter wheat.  400 

For winter wheat, CSPEIs are more correlated to yields than 6-month SPIs over the 401 

majority of the western High Plains region. For these counties, the best traditional drought 402 

metrics were 9-month SPIs ending in June, which include fall and early winter precipitation, and 403 

30-day EDDI in June. The CSPEI does not include fall precipitation, but is more closely 404 

correlated to yields than 6-month SPI because mid-to-late season evaporative demand impacts 405 

yields. 406 

Only a small fraction of CONUS counties see a stronger correlation between soy CSPEI 407 

and soybean yields than 6-month growing season SPIs. This may be due to the long, flexible 408 

planting season for soybeans. The exact growing season is more difficult to parametrize for 409 

soybeans, making CSPEIs less effective. 410 
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Corn CSPEIs are more closely correlated to yields in dry years than 6-month SPIs for 411 

portions of the High Plains, Midwest, South, and Southeast regions (Fig. 12a). There is a 412 

downward trend in CSPEI driven by increased PET in recent warm years. This trend is not 413 

detected in SPI. As a result, some of the years with the greatest difference between SPI and 414 

CSPEI are recent, hot summers. Fig. 13 shows the difference between CSPEI and growing 415 

season SPI for counties highlighted in Fig. 12a. We see here the relationship between SPI and 416 

CSPEI is changing as summers warm. Detecting this trend leads to better correlation with yields 417 

in some cases. For instance, corn CSPEIs were significantly lower than SPIs in 2012 for counties 418 

highlighted in Fig. 12a in the Midwest, High Plains, and Southeast at 99% confidence. Yields 419 

were also lower in these counties than the average Midwest County by an average of 10 420 

bushels/acre. This indicates even if SPIs are not extremely poor, corn yields may still be strongly 421 

suppressed by summers with anomalously high reference ET. Similar examples can be seen in 422 

the Southern Climate Region in 2009 and 2011, which were both hot summers. CSPEIs were 423 

lower than SPIs in the south in these low yield years, and were more closely correlated to yields 424 

as a result.  425 

The greatest difference between CSPEI and SPI occurred in the Midwest for corn in 426 

2014. This was a cool, wet summer with above normal yields. NLDAS-2 still indicated higher 427 

than normal PET, leading to above normal ETr in CSPEIs. For most counties, SPIs this year were 428 

positive, so 2014 was not included in correlation analysis of dry years. On the other hand, the 429 

majority of CSPEIs were negative, and decreased the correlation between CSPEIs and yields. 430 

This merits further investigation as well.  431 

There are critical stages of growth for corn, such as silking and tasseling, that may only 432 

last a few days (Cakir 2004). Extreme hot and dry weather may have a large impact on yields 433 
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during such phases. This study is performed at too coarse a resolution to capture such effects. 434 

Future investigations of the relationship between climate variables and crop yields should seek to 435 

understand these connections more closely.  436 

4. Discussion 437 

Due to the multifaceted and multiscalar nature of drought, assessing severity is not a 438 

straightforward endeavor. We developed a group of indices designed to appraise severity of 439 

drought over specific row crops (corn, soybeans, winter wheat) called crop-specific standardized 440 

precipitation-evapotranspiration indices (CSPEIs) to add clarity to the agricultural drought 441 

monitoring process. CSPEIs have the following helpful properties: they’re data-driven, available 442 

in near real-time, combine meteorological and phenological data, and in many cases correlate 443 

significantly with crop yields.  444 

Results indicate that optimal yields often occur when growing season CSPEIs are greater 445 

than zero. For most crops and climate regions yields are highest when 0 < CSPEI < 1. Examples 446 

include the Midwest, Northeast, South, and High Plains for corn, Midwest, South, and High 447 

Plains for soybeans, and High Plains for Winter Wheat. Yields decline at both dry and wet 448 

extremes. The majority of bottom 5th percentile yields occur in years where CSPEIs are low. 449 

There are some exceptions. The worst winter wheat yield years occurred primarily during wet 450 

extremes for the Midwest, Northeast, and South. 451 

CSPEIs are positively correlated with yields for the largest field crops over CONUS: 452 

corn, soybeans, and winter wheat, in drier than normal years. Statistical significance is scattered 453 

in some cases (e.g. soybeans in the Midwest), and non-existent in others (e.g. winter wheat in 454 

eastern regions). But generally, CSPEIs do correlate significantly with yields for crop-location 455 
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combinations where the crop is considered a “major crop” by USDA. Notable examples include 456 

the Midwest and South for corn, the Midwest for soybeans, and the High Plains for winter wheat. 457 

Moisture is often plentiful over eastern CONUS, and plant growth is therefore fundamentally 458 

limited by amount of solar energy received. In the dry west, crop growth is limited by moisture. 459 

Regions in between, such as the central plains, are transitional zones between energy and 460 

moisture-limited climates (Budyko 1974, Seager et al. 2018). Both a crop water balance model, 461 

and an actual crop, should be sensitive to weather variations in transitional regions. Previous 462 

studies suggest this boundary extends from Texas northward through Oklahoma, Kansas, and 463 

Nebraska (e.g. Koster et al. 2004, Koster et al. 2011, Wei and Dirmeyer 2012). One might expect 464 

these regions to be especially sensitive to seasonal moisture anomalies. Correlations between 465 

CSPEI and yields were higher over central CONUS than the moisture limited-west or energy-466 

limited east. 467 

Assessment of existing indicators: SPI, EDDI, SPEI, over varying seasons and 468 

aggregation periods indicates growing season precipitation is significantly indicative of yields. 469 

The addition of PET, or ETr, to index computation usually resulted in small changes to 470 

correlation with yield. SPIs, SPEIs, and CSPEIs all performed similarly over the growing season. 471 

This is a curious result and merits further study. In theory, higher PET or ETr should trigger plant 472 

stress, and therefore impact yields (e.g. Meyer et al. 1993, Moorhead et al. 2013). Results may be 473 

different with a different reanalysis dataset. Even so, CSPEIs are marginally more closely 474 

correlated with yields than warm season 6-month SPIs and SPEIs in the Midwest, High Plains, 475 

Southeast, and South for corn, and in the northeast for soybeans.  476 

Typically, either a one- or three-month SPI or SPEI with an aggregation period ending 477 

between July-September was the tested index correlated most strongly to yields. In the cases of 478 
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corn and soybeans, the highest performing traditional indicators were those that captured the 479 

middle period of the crop’s growth cycle. This may indicate one need only monitor the middle of 480 

corn or soybean growth cycles to best predict yields from weather data.  481 

CSPEIs presented here oversimplify true crop water balance in several ways: 1. 482 

Antecedent soil moisture was not considered. This can create inaccuracies in monitoring crop 483 

conditions in anomalously wet or dry winters. In 2019, for instance, fields were flooded for 484 

weeks across much of the American heartland (Irwin and Hubbs 2019). On the dry side, winter 485 

wheat producers may face difficulties long before spring green up if soils are dry during fall 486 

planting season. This could possibly be remedied by assigning a start-of-season CSPEI value 487 

based on soil moisture output (e.g. variable infiltration capacity (VIC) model (Yuan et al. 2019)).  488 

2. Growing crops over much of the western US is only sustainable through irrigation, which is 489 

not considered in the computation of CSPEIs. Winter snowpack, and summer temperatures may 490 

be better indicators of yield for runoff-fed irrigation zones such as California’s San Joaquin 491 

Valley. 492 

CSPEIs are both significantly correlated with yields, and more closely correlated with 493 

yields than SPIs for drier than normal years in portions of the High Plains Region for winter 494 

wheat, and portions of the High Plains, Midwest, South, and Southeast for corn. Differences 495 

between the two metrics were largest during recent hot, dry summers such as 2011 in the South, 496 

and 2012 for the High Plains and Midwest. Differences between CSPEI and SPI are likely to 497 

become more apparent in a warmer climate. 498 

Nowhere near all available drought indicators were used in this study; there are hundreds, 499 

many with flexible data aggregation periods (Svoboda and Fuchs 2016). As such, correlating 500 

drought indicators to yields is a process that could be repeated endlessly. While crop-specific 501 
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indices do produce an advantage over precipitation and evapotranspiration-based metrics of 502 

similar aggregation length, indices that remotely sense vegetative health, such as the Vegetative 503 

Health Index (Bento et a. 2018), Evaporative Stress Index (Otkin et al. 2013), and Vegetation 504 

Drought Response Index (Brown et al. 2008) may perform even better. However, these 505 

indicators have not been computed over as many years of record, and therefore do not offer as 506 

many years of data for testing. 507 

The late Dr. Kelly Redmond once said “In essence, as with rainbows, each person 508 

experiences their own drought.” While it remains impossible to objectively monitor every 509 

producer’s individual experience with drought, CSPEIs do add clarity to the agricultural drought 510 

monitoring process.511 
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TABLES 738 

Crop Type GDD Mid GDD End 

Corn 630 1500 

Soybeans  390 1060 

Winter Wheat 280 1140 

Table 1: Growing degree days needed (Celsius) to reach mid-season conditions and harvest for 739 

corn (1), soybeans (2) and winter wheat (3). 740 
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Crop Type Kc initial Kc Mid Kc End 

Corn 0.3 1.2 0.8 

Soybeans  0.5 1.15 0.5 

Winter Wheat 0.2 1.15 0.3 

Table 2: Crop coefficients for corn, soybeans, and winter wheat at the beginning, middle, and 741 

end of a growing season. 742 

FIGURES 743 

744 

Figure 1: United States Climate Regions as defined by the National Oceanic and Atmospheric 745 

Administration. 746 
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 747 

Figure 2: Modeled mean (a-c), and standard deviation (d-f) MPGS P – Ref ET for corn (a,d), 748 

soybeans, (b,e), and winter wheat (c,f). Units: cm. 749 
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 750 

Figure 3: Lines of best fit for CSPEIs vs crop yields by crop (panels a-c), and region (colored 751 

lines). 752 

 753 
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 754 

Figure 4: Scatterplots of all CSPEI and yield pairs (blue dots) with lines of best fit (black) for 755 

corn for each climate region (panels a-f). 756 
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 757 

Figure 5: Correlation between CSPEI and yields for corn (a), soybeans, (b), and winter wheat 758 

(c). Results masked for counties with a < 0.05 (r > 0.33 for df = 19). Computed from years 1980-759 

2018 for years with CSPEI < 0. 760 
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 761 

Figure 6: Average county correlation between CSPEI and yields as a function of date for a, 762 

corn, b, soybeans, and c, winter wheat. 763 
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 764 

Figure 7: Fraction of < 5th percentile yield years among all counties in which CSPEI value was 765 

below value X for corn (a), soybeans (b), and winter wheat (c). Computed for all climate regions 766 

(colored lines) from growing seasons 1980-2018.  767 
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 768 

Figure 8: Average correlation between drought indicators and yields by region for corn. Panels 769 

split by region. a = Midwest, b = Northeast, c = Southeast, d = South, e = High Plains, f = West. 770 

Region average correlation between growing season CSPEIs and yields shown using tick marks 771 

on left of each panel. Colored lines show region average correlations between traditional 772 

drought indicators for aggregation periods ending at time of year shown on x-axis, and crop 773 

yields. Green = SPI, blue = EDDI, purple = SPEI. Indices shaded by aggregation length (darker 774 

= longer, lighter = shorter). Correlations only computed for years in which drought index < 0. 775 
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 776 

Figure 9: Average correlation between drought indicators and yields by region for soybeans. 777 

Panels split by region. a = Midwest, b = Northeast, c = Southeast, d = South, e = High Plains. 778 

Region average correlation between growing season CSPEIs and yields shown using tick marks 779 

on left of each panel. Colored lines show region average correlations between traditional 780 

drought indicators for aggregation periods ending at time of year shown on x-axis, and crop 781 

yields. Green = SPI, blue = EDDI, purple = SPEI. Indices shaded by aggregation length (darker 782 

= longer, lighter = shorter). Correlations only computed for years in which drought index < 0. 783 
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 784 

Figure 10: Average correlation between drought indicators and yields by region for winter 785 

wheat. Panels split by region. a = Midwest, b = Northeast, c = Southeast, d = South, e = High 786 

Plains, f = West. Region average correlation between growing season CSPEIs and yields shown 787 

using tick marks on left of each panel. Colored lines show region average correlations between 788 

traditional drought indicators for aggregation periods ending at time of year shown on x-axis, 789 

and crop yields. Green = SPI, blue = EDDI, purple = SPEI. Indices shaded by aggregation 790 

length (darker = longer, lighter = shorter). Correlations only computed for years in which 791 

drought index < 0. 792 
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 793 

Figure 11: [Correlation between MPGS CSPEI and corn (a-c), soybeans (d-f), and winter wheat 794 

(g-i) yields for years in which CSPEI < 0] – [Correlation between 6-month SPI (left), EDDI 795 

(middle), SPEI (right) and corn (a-c), soybeans (d-f), and winter wheat (g-i) yields for years in 796 

which index < 0] for MW=Midwest (black), NE=Northeast (purple), SE=Southeast (gold), 797 

S=South (green), HP=High Plains (blue), and W=West (cyan). 798 
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 799 

Figure 12: Difference in correlation between CSPEI and yields and 6-month SPI and yields. 800 

Counties in red are 1. Significantly correlated with crop yields for years in which CSPEI < 0, 801 

and 2. More closely correlated to yields than the highest correlated 6-month SPI ending between 802 

August 15th and September 30th. Deeper red shadings indicate a greater difference between 803 

CSPEI and SPI. All other counties shown in white. Results shown for a) corn, b) soybeans, and 804 

c) winter wheat. 805 
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 806 

Figure 13: Average regional difference between corn CSPEI and 6-month SPI ending between 807 

August 15th and September 30th most highly correlated to yields as a function of time. Computed 808 

for counties in which 1: CSPEI more closely correlated to yields than SPI in years where 809 

drought index < 0, and 2: CSPEI significantly correlated to yields at 95% confidence for years 810 

in which CSPEI < 0. Organized by region a. Midwest, b. Southeast, c. South, d. High Plains. 811 
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