Tracking Seasonal Precipitation's Dependence on Root Zone Soil Moisture Using Regional Reanalysis

Peter Goble Russ S. Schumacher and Nolan J. Doesken Colorado State University

Background

- The atmosphere is chaotic; this makes seasonal forecasting difficult. Soil moisture data is less temporally chaotic, and may offer a partial solution
- If root zone soils are drier (wetter) than usual, it may cause increased subsequent seasonal dryness (wetness) on a seasonal timescale (a positive feedback!)

Background

Land-Atmosphere Coupling from GLACE Project

Land-atmosphere coupling strength (JJA), averaged across AGCMs

Coupled modeling experiments show evidence of this relationship, but the spread is large. Can we see this relationship in reanalysis?

Motivation

U.S. Drought Monitor

April 3, 2012

(Released Thursday, Apr. 5, 2012) Valid 7 a.m. EST

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	0.00	100.00	55.48	18.50	0. 15	0.00
Last Week 3/27/2012	2.25	97.75	50.97	9.26	0. 15	0.00
3 Month s Ago 1/3/2012	65.37	34.63	24.98	10.60	0.04	0.00
Start of Calend ar Year 1/3/2012	65.37	34.63	24.98	10.60	0.04	0.00
Start of Water Year 9/27/2011	60.62	39.38	27.69	19.99	7.88	0.56
One Year Ago 4/5/2011	40.11	59.89	54.20	41.58	0.00	0.00

Intensity:

D2 Severe Drought

D3 Extreme Drought D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Brian Fuchs National Drought Mitigation Center

http://droughtmonitor.unl.edu/

Motivation

U.S. Drought Monitor Colorado

July 3, 2012

(Released Thursday, Jul. 5, 2012) Valid 7 a.m. EST

Drought Conditions (Percent Area)

D0-D4 D1-D4 D2-D4 D3-D4 None D4 100.00 100.00 100.00 70.69 Current 0.00 5.52 Last Week 0.00 100.00 100.00 97.72 45.83 0.00 6/26/2012 3 Months Ago 55.48 18.50 0.00 100.00 0.15 0.00 4/3/2012 Start of Calendar Year 65.37 34.63 24.98 10.60 0.04 0.00 1/3/2012 Start of 39.38 19.99 Water Year 60.62 27.69 7.88 0.56 9/27/2011 One Year Ago 49.31 50.69 34.84 29.02 16.64 1.57 7/5/2011

Intensity:

D0 Abnormally Dry D1 Moderate Drought

D3 Extrem e D rought D4 Exception al Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author: Richard Tinker CPC/NOAA/NWS/NCEP

D2 Severe Drought

http://droughtmonitor.unl.edu/

Today's Questions

- Do reanalysis data provide supporting evidence that soil moisture levels moderate seasonal precipitation?
- Does the location and intensity of soil moisture correlation (coupling) hot spots change as a function of season?
- How does the relationship between soil moisture and precipitation in the Rockies and Intermountain West compare to that of the south and central Plains?
- Can correlations between modeled soil moisture and precipitation be used to make marginal improvements to seasonal precipitation forecasts?

Methods

- Find linear correlations between standardized root zone soil moisture and standardized precipitation indices for the subsequent three months
- Data obtained from North American Land Data Assimilation for 1985-2014

All data standardized

8

Justification for Linear Approximation

- 1. First order approximation (sometimes less is more)
- 2. There exists copious subgrid scale variability, so may is well keep the analysis simple
- 3. Anomaly corresponding to wilting not spatially or temporally constant

Antecedent Soil Moisture/Seasonal Precipitation Correlation Hotspots (MAM)

Antecedent Soil Moisture/Seasonal Precipitation Correlation Hotspots (AMJ)

Antecedent Soil Moisture/Seasonal Precipitation Correlation Hotspots (MJJ)

Antecedent Soil Moisture/Seasonal Precipitation Correlation Hotspots (JJA)

Antecedent Soil Moisture/Seasonal Precipitation Correlation Hotspots (JAS)

Antecedent Soil Moisture/Seasonal Precipitation Correlation Hotspots (ASO)

Domain Average Correlation as a Function of Resolution and Season

Conclusions

- Reanalysis soil and precipitation data reveal a dynamic band of statistically significant positive correlation between root zone soil moisture and subsequent seasonal precipitation
- Winter precipitation (late spring soil moisture) may play an important role in warm season precipitation over the intermountain west
- Correlations in the Central Plains may carry more importance than in the intermountain west because the correlation maximizes at the same time that seasonal precipitation maximizes

Persisting Questions

- How much might soil moisture in a convection source area (ie Rocky Mountains) impact seasonal precipitation elsewhere?
- How is the distribution of soil volumetric water content impacting correlations?
- Are there methods using reanalysis data that would add more value to a seasonal precipitation forecast?

