Climate Change in Colorado – Yes, No, Maybe So?

Nolan Doesken

State Climatologist, Colorado Climate Center Atmospheric Science Department Colorado State University

Presented at Peak to Prairie Landscape Conference, Colorado Springs, February 8, 2008

Prepared by Odie Bliss

Has our climate changed in the past?

Will our climate change in the future?

So what's the big deal? – Change happens

Tom McKee, 1974-1999

Roger Pielke, 2000-2005

Nolan Doesken, 2006 - ??

The Climate of Comfort

We humans seem to like living in sunny, dry places

> We need a reliable supply of water

We want our search for comfort, food, and water to be inexpensive and take very little of our time

We like to be warm in the winter, cool in the summer, able to travel at will, and able to eat foods and consume goods from around the world – all the time

>We've gotten good at "Living Large"

--- to accommodate this, we have become incredible consumers of energy almost without realizing it.

Our consumption of fossil fuels is changing the composition of the atmosphere

By changing the atmosphere we could be changing the climate of the earth

There is a lot of information out there about Climate Change

If you want to get the latest scoop on the Global Scale read the IPCC (Intergovernmental Panel on Climate Change) Report at this website

<u>http://www.ipcc.ch</u>

Summary for Policymakers

If you want an abbreviated version, read: IPCC: Climate Change 2007: The Physical Basis (AR4)

http://www.ipcc.ch

Click on: "Summary for Policymakers" >Those results represent the global majority (consensus) scientific perspective

>There are also minority views

There may be a consensus regarding Global Climate Change

> Understanding local and regional climate change is much more difficult. That is the challenge at hand.

Let's begin by understanding our current and recent climate

Systematic weather data collection began in southeast Colorado in the 1870s

(FORM 4.) WAR DEPARTMENT. SIGNAL SERVICE, U. S. ARMY. DIVISION OF TELEGRAMS AND REPORTS FOR THE BENEFIT OF COMMERCE. METEOROLOGICAL RECORD for the Hill ending For 25th 1971 of Deriver Bol Ser.															
Date of Observation.	Time of Observation.	Height of Barometer.	Height of attached Thermom- eters Official Calue	Reduced Barometer.	THERMOMETER.	Direction of wind.	Velocity of wind in miles per hour.	Pressure of wind. Pounds per square foot.	Amount of cloud.	Direction in which upper clouds move.	Reis (or snow) commenced. (Time.)	Rain (or snow) ended. (Time.)	Amount of rain or melted snow.	Self registering Resonante	; REMARKS.
	5.43 am	25.00	37 22	30.07	22 21 26	(alm)	0	0	4/4	and the second se	and the second	oum.	Blank		Lint Snow
11 1-10	2.430.m	23.09	63 36	29.91	30 30 40	N.	2	.02	0						Colora Colora
the 1 the	5.43 a.m 2.43 P.m	25.00	50 14 57 22 63 36	30.07	22 21 26 36 30 40	- Colin	02	02	4/4	12	- a:n	8 a.m.	Blank		Light & now
Allonday Nor 200	5.430.10 2.43 P.m	24.99	50 21 56 43	30.07	21 19.5 70 43 34 20	N.W.	13	:84 1.62	1/4 4/4	24					Stratus Stratus
Inesday Nov 21	7.43 P.m. 5.43 P.m. 2.43 P.m.	24.70 24.31	55 31	29.59	31 29 79 35 32 70	S.W.	2 4 2	.02) .00	4/4 4/4 4/4	97	3 P. 12	110 20	<i>a i</i>		Hratus L'alus
Hednesday Tor. 21	2.43 P.m.	24.54	5525	29.06	25 214 01	S N.W.	6 3-	.18 .12	4/4	230	10.30Q:m	110.110			Stratus Li Inou
Thursday Nov 23	9.430.m 5.430.m 2.43 P.m	24.36	56 32 70 42	29.17	32 32 100	S.W.	420	.40 .00 .02	4/4	10 1 33.7		I h.m	.21		Cloudy Prisuge Curner
Suday too 24	5.43 P.m 2.43 P.m 9.13 P.m	24.37	50 32	29.17 29.03	32 285 64	SW SE N.F	722	·24 ·02 1:62	14 214	<u>98</u> 32.7					Skalus Cirus & Stratis Lidit dend Br
Duranium sol 23	Jogranit	~~~~		239 L	Dorr	N.		han) <u> </u>	71	A	had .		J
		ANR T		$ \langle \cdot, \cdot \rangle_{\mathbb{C}}$	Denv	er ind	oven	ider .	19-4	13, 10)/1	unin d	Tento	n.	Ibserver

In 1890 the USDA took over the responsibilities of climate monitoring on a national level, and the first civilian weather service was formed – the U.S. Weather Bureau

Colorado Weather Stations in 1890

Since then, the U.S. Weather Bureau/National Weather Service has faithfully maintained an oft taken for granted network of weather stations in Colorado and across the country – the Cooperative Observer Network

The NWS stations remain the backbone network for long-term climate monitoring

From Kelly Redmond, WRCC

Approximately 5000 daily max/min temperature stations, 8000 daily precipitation stations, 3000 automated hourly precipitation stations.

What have we learned from over 120 years of continuous climate monitoring?

Solar radiation is reliable

Winters are consistently colder than summers – ©

Average Temperatures for Selected Southeast Colorado Locations

Daily temperatures vary a lot

Precipitation also varies seasonally

Average Precipitation for Selected Stations in Southeast Colorado

Mountain snow accumulation is very important

PORPHYRY CREEK SNOTEL for Water Year 2008

Independence Pass Snotel

INDEPENDENCE PASS SNOTEL for Water Year 2008

Colorado Average Annual Precipitation

Drought Visits Our Area Regularly

Fraction of Colorado in Drought

Based on 48 month SPI

(1890 - December 2007)

Much of our water evaporates

Pueblo WSO May through Sept Pan Evaporation

We know a lot about spatial patterns, seasonal cycles, and year-to-year climate variations.

Confidently detecting climatic trends is much more challenging and difficult.

We can find many frustrating limitations to our climate records:

- Changing instrumentation
- Aging weather observers
- Changing environments around our weather stations
- Changing weather station locations
- Automation, etc.

Denver All Stations

Dillon Annual Precipitation

Dillon Precipitation

Fort Collins Winter Temperatures

Fort Collins Water Year Average Temperatures for Winter (Oct-Apr)

Still, our climate records are more complete, consistent, and widespread than nearly all other forms of long-term environmental monitoring (i.e. we shouldn't whine).

Rocky Ford Winter (DJF) Temperatures

Rocky Ford Winter Temperatures

Trinidad Winter (DJF) Temperatures

Trinidad Winter Temperatures Temperatures (deg F) --- Tmax ****¶/

Rocky Ford Spring (MAM) Temperatures

Trinidad Spring (MAM) Temperatures

Trinidad Spring Temperatures

Rocky Ford Summer (JJA) Temperatures

Rocky Ford Summer Temperatures

Trinidad Summer (JJA) Temperatures

Trinidad Summer Temperatures

Rocky Ford Fall (SON) Temperatures

Rocky Ford Fall Temperatures

Trinidad Fall (SON) Temperatures

Trinidad Fall Temperatures

Colorado Springs Number of Days Equal or Less Than Zero

Temperatures are far more stable than precipitation. In fact most other climatic elements (humidity, wind, sunshine and cloudiness, evaporation, etc.) are much more consistent from one year to the next than precipitation_

Precipitation varies by as much as 400% from a very dry year to a very wet year

Water Year (Oct-Sep) Precipitation for Rocky Ford (1890 through 2007)

Pueblo Precipitation

Pueblo Water Year (Oct - Sep) Precipitation Totals

Year

Colorado Springs Precipitation

Colorado Springs Water Year Precipitation (Adjusted Values*) from 1893-2007

Las Animas Precipitation (annual)

Las Animas Annual Precipitation

Holly Precipitation (annual)

Holly, CO Annual Precipitation (in)

Lamar Precipitation (annual)

Lamar, CO Annual Precipitation (in)

Fremont Pass April 1 Snowpack

Fremont Pass Snotel April 1st SWE

John Martin Dam Evaporation

John Martin Dam May through Sept Pan Evaporation

Arkansas Valley CoAgMet Reference ET (May-Sept)

Should we be concerned about Climate Change?

Any trends so far are subtle, but 7that may not always be the case

Increases in greenhouse gases are real, large and may continue

So, what comes next?

You can't just track CO₂ to understand potential climate change

Climate feedbacks are complex Kinds of Feedbacks: >Albedo Feedbacks >Water-vapor Feedbacks Lapse-rate Feedbacks Cloud Feedback(s)

Our current projections are based on imperfect computer models

The observed changes are shown by the black curves.

Results from about 20 models are shown in red (upper panel) and blue (lower panel).

However, these results are not completely convincing, because:

- Many of the prescribed forcing components are uncertain,
- The forcings have not been "standardized," and
- Inspection of the model results shows that model-sensitivity is inversely correlated with the strength of the forcing used.

Warming of ~3 K for doubling CO₂ Rising sea level ~ I m in 21st century Stronger storms More droughts

All based on simulations with complicated computer models.

But before we get to that...

Slide taken from Dr. Dave Randall's Climate Change talk

Colorado Summer (Jun-Aug) Temperatures Actual Temperature Average Temperature Summer (Jun-Aug) 1895 - 2007 Data 70 -68 · Degrees Fahrenheit 60 -Year

Colorado Fall (Sep-Nov) Temperatures Actual Temperature Fall (Sep-Nov 1895 - 2007 Data Average Temperature 49 · Degrees Fahrenheit Year

What should we do??

The Colorado Climate Center will continue to monitor Colorado's climate very closely

70 - 89

90 - 109

Water Year 1999 (Oct. 1998-Sept. 1999) Precipitation Precent of Average for 1961-1990 Averages

Water Year 2002 (Oct. 2001 - Sept. 2002) Precipitation Percent of Average for 1961-1990 Averages

Recent Progress: Colorado Climate Trends Website New website to go operational in June 2008 > Joint collaboration funding by Atmospheric Science Department and CIRA > Will be a great information asset for the state and university Colorado limate Trends

Colorado Climate Trends » Home

auon Map Graphs and Data Station Information

Welcome to the Colorado Climate Trends Website

The Colorado Climate Center has been collecting data from over 250 Colorado weather stations for over 100 years. Monthly data including average maximum, minimum, and mean temperature and average monthly precipitation. You can see trends in Colorado's climate in multiple charts from any one of many stations

We are also encouraging citizens across the State to help us measure local precipitation

Photos by H. Reges

CoCoRaHS – Community Collaborative Rain, Hail and Snow Network

For information and to volunteer, visit the CoCoRaHS Web Site

http://www.cocorahs.org

Support for this project provided by:

NOAA Environmental Literacy Program and <u>many</u> local charter sponsors.

Colorado Climate Center

Data and Power Point Presentations available for downloading

http://ccc.atmos.colostate.edu

